

Foundry 101

Foundry 101

- What is a casting?
 - An object made by pouring molten metal or other material into a mold.
- How is a casting formed/shaped?
 - By liquid (molten iron) taking the shape of the container (mold)
- Why are castings a good choice for manufacturing?
 - Castings allow for near net (almost finished) shape requiring less post production and allowing for complex shapes.
 - High production
 - Recyclability

Process of Making a Casting

- Melt
- Core making
- Molding
- Pouring
- Cooling/shakeout
- Cleaning
- Inspection/shipping
- Engineering

Melt

Melt

- Grey Iron
 - Graphite flakes
 - Brittle

- Ductile Iron
 - Graphite spheres
 - Ductile

Melt

- Cupola (raw iron)
- Holding furnace (raw iron)
- Alloy station (specific grade)
- Junker/Autopour (specific grade)

Note: This is one of many flow scenarios.

- What is a core and why do we use it?
 - · A consumable sand product used to shape features we can't shape with greensand
 - Undercuts
 - Internal features

- 2 part resin coated sand.
 - Chemical reaction hardens the core.
- Vaporized catalyst to harden core. (Coldbox)

- Green sand
 - Contains moisture (water)
 - Ingredients
 - Silica sand
 - Water
 - Clay (binder)
 - Sea coal
 - Soda ash

- Sand properties
 - Compactability
 - Measure of how much the sand blend can be compacted
 - Permeability
 - Amount of air flow through compacted sand
 - Moisture
 - Moisture content within the sand blend
 - Methylene blue
 - Measure of active bond in the sand mix
 - Green strength

Pouring

Pouring

- Laser autopour
- Nitrogen pressure
- Ceramic stopper rod
- 2470°-2520°F
- Try to fill as fast as possible without erosion and turbulence (30lbs/sec)
- Pouring too slow can cause misruns or short pours as the iron cools
- Pouring too fast can cause inclusions of slag or sand

Pouring

Cooling/Shakeout

Cooling/Shakeout

Cooling/Shakeout

Finishing

Finishing

- Chipping and grinding
- Trim press
- Automated finishing
- Paint

Finishing

- Cleaning:
 - Fin removal, riser contacts, ingate contacts, scabs, salvageable defects
- Each job has a calculated finishing rate to determine output and piece rate.
- Each feature has a grinding spec
- Tools used:
 - Cup grinders
 - pencil grinders
 - Cutting wheels
 - Hammers

Inspection/Shipping

Inspection/Shipping

- Dimensional inspection
 - Laser scanning
 - Hardline layouts
- Material testing

Engineering

Casting Design

- Parting line
- Draft
- Machine stock
- Moldability
- Defect risk
- Core(s) and core print
- Solidification analysis
- Filling design

The NEI Group